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Abstract 
This paper deals with the determination of a shortest path between two points in a 3D space using an 
articulated robot.  

 
I. INTRODUCTION 
 

HORTEST path between two points in a 3D space is a straight line motion & is defined as the 
motion along a straight line or movement of a rigid body along a straight line and represents the 
shortest distance between the two points in the 3D workspace of any robot.  
The straight line motion from the source ( pick ) to the goal (place) covered in a specific amount of 
time is known as the straight line trajectory,  i.e., if temporal information is added to the straight 
line path by specifying the times  at where the gripper or tool-tip is along the straight line path,  
then the straight line path gets converted into a straight line trajectory [1].   
Straight-line motion is always required in TCS R6. By controlling all the joints in a coordinated 
manner, the tool-tip can be made to move along a straight-line path. If the distance between the 
adjacent points in the joint space Rn is approximately small, then a straight-line path or trajectory in 
the TCS R6 can be designed. How we get straight-line motion is to use the IK equations.  
The applications of straight line motions are conveyor belt operations, straight line seam arc 
welding, inserting peg into a hole, threading a nut onto a bolt, performing screw transformations, 
for inserting electronic components onto PCB, doing robotic manipulation from above the object. 
The paper is organized in the following sequence.   
A brief introduction about the straight line motion was presented in the previous paragraphs along 
with the applications.  A review of the straight line motion concepts is presented in the section 2.  
The bounded deviation algorithm used in the paper is discussed in section 3.   A mathematical 
formulation of the simulation study is depicted in section 4 followed by the simulation results in 
section 5.  This section is followed by the conclusions and the references.  
 
II.  STRAIGHT LINE MOTION CONCEPTS 
Consider the Fig. 1.  Let w0 and w1 be the two points in the space between which the robot has to 

draw a straight line.  Here, we use the following parameters as [2]. 
 w0  : is the source point (initial point) ; i.e., the TCV at the point 0 ; 
 w1  : is the goal point (final  point) ; i.e., the TCV at the point 1 ; 

 w0 and w1  : both are ( 6  1 ) vectors in TCS, R6. 
 T  : is  the total  time taken to move from w0 to w1, i.e., the total time taken to traverse 

the path, obviously T > 0.  
     = { w0, w1 } = path taken by tool. 
 
The equation for SL path / straight line trajectory w(t) of the tool as shown in the Fig. 1 is 
represented by an equation of 1st degree or of 1st order, i.e., no squared terms in the expression, i.e., 
we are writing an expression for the straight line path or trajectory in terms of the SDF and the TCV 
[2].  
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 w (t)  =  [ 1 – S(t) ] w0 + s(t) w1      ; 0  t  T (1) 
where s(t) is a differentiable Speed Distribution mapping Function [SDF] which maps ( 0 , T ) into ( 
0 , 1 ) & is given by [2] 
 t

s(t)=
T

  (2) 

At the start of the trajectory, t = 0 ;  
i.e., s (0) =  0 ( start ; initial ; pick ; source point )  
,                    w(t) = [ 1 – 0 ] w0 + 0 w1 = w0  (3)  
........ corresponds to start of the path [2].     
 
At the end of the trajectory, t = T,  
i.e.,   s (T)  = 1  
i.e., the end ; goal ; destination ; place ; final point. 
,                    w(t) = [ 1 – 1 ] w0 + 1 w1 = w1  (4) 
 
......... corresponds to end of the path [2].   
 
Hence, it is verified that the Eqn (1) is of the first order or first degree, i.e., a straight line equation of 
the form y = mx + c, where c is the intercept, m is the slope.  
 
III. BOUNDED DEVIATION ALGORITHM [BDA] AND ITS BASIC WORKING PRINCIPLE 
 
BDA is an algorithm, which is used to obtain an approximated straight-line motion in TCS R6 by 
using an articulated robot by selecting the number of knot points properly [4], minimizing them and 
distributing them along the trajectory in an optimal manner [2].   
 

 
 

Fig. 1 :  Straight line motion, a graphical representation 
 
A. Principle of BDA 

It is easier to produce a straight line motion (SL path or SL trajectory) in case of xyz, PTP, 
cylindrical, polar or spherical or SCARA or Stanford robots.  But, in case of articulated robots, it is 
very difficult to obtain a straight line motion in the TCS. All the joints has to be activated 
simultaneously in a coordinated manner in order to make the tool-tip to move in a straight line. For 
achieving a straight line motion in the TCS, the following procedure is used [2].  

 
Inverse kinematics equations [2] has to be solved at each point after minimizing the number of knot 
points on the trajectory and distributing them along the trajectory in an optimal manner.  The 
concept of the BDA algorithm used is shown in the Fig.  2. 
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Fig. 2 :  Interpolation  of joint space approximation to the straight line motion 
 
 
B. Bounded Deviation Algorithm for Obtaining Straight Line Motion [2] 
1. Select a tolerance limit (called as threshold value) for straight line motion as  > 0 [8]. 
2. Given, the start point and end point of trajectory as w0 and w1 [TCV’s at the starting and ending 

points], use the inverse kinematics equations to compute q0, q1 ; i.e., the joint vectors  associated 
with {w0, w1}. 

 w0  IKP  q0 ;  
 w1  IKP  q1. 
3. Compute the joint space mid-point as 

 0 1
m

q +q
q =

2
 

4. Use the information from qm and tool configuration vector w to find the equivalent TC space 
mid-point as 

 wm = w(qm) 
  i.e., using qm, find the TCV, w(qm) ; substitute qm in the  TCV of that particular robot which is 
used to obtain the  straight line motion and obtain wm. 
5. Find the exact TCS mid-point as 

 
0 1

M w + w
w =

2
 

6. If the error or deviation  wm – wM    ; then, stop.   
7. Else, insert wM as a exact knot point between w0 and w1. Now, the trajectory is broken up into 

two parts, viz., {w0, wM} and {wM, w1}. 
8. Repeat the steps ( 1 to 6 ) recursively to the newly generated trajectory segments {w0, wM} and 

{wM, w1} till all the newly generated trajectory segments are within  limit of . 
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IV. A SIMULATION STUDY 
A simulation is performed on a five axis articulated robot which was designed and fabricated in the 
college laboratory as shown in Fig. 4 [10]. One pass of BDA is shown analytically here to find a 
joint space knot point for approximating the following straight-line trajectory [8].  We consider the 
tool configuration vectors at the starting point and the ending point to be specified by the user as  
[7] 

    w0 =  [ 600 ,  0 ,  250 ,  0 ,  0 ,  2]T 

    w1 =  [ 600 ,  0 ,  50 ,  0 ,  0 ,  2]T 

The physical dimensions of the designed system are as follows.  
      d =  [495.2   0   0   0   368.2 ]T and  
      a  =  [ 0   457.2   457.2    19   0 ]T ? 
The tool configuration deviation at the joint-space midpoint is obtained as follows [6]. The 

general inverse kinematic equations [2] for any five axis articulated robot is [2] 
Base  angle   1   ( rotary ) : 

 q1  =  1 2

1

w
tan  

w
  
 
 

 

GTP  angle   234  : 

 q234 =   1 4 1 51

6

C w +S w
tan

w
  
  

 

  =  – arc tan 2 ( –b0 , –w6) 
Intermediate variables are : 
     b1 =  C1 w1  +  S1 w2  –  a4 C234  +  d5 S234                                                         

  b2 =  d1  –  a4 S234  –  d5 C234  –  w3   
Shoulder  angle   2   ( rotary ) : 

 q2  =     
   

2 3 3 2 3 3 11

2 3 3 1 3 3 2

a + a C b a S b
tan  

a + a C b a S b
  
   

 

Elbow  angle   3   ( rotary ) : 

 q3  =  
2 2 2 2

1 1 2 2 3

2 3

b b a a
cos  

2a a
    
 
 

 

Tool  pitch  angle   4   ( rotary ) : 
 q4  =  q234  –  q2  –  q3  

Tool  roll  angle   5   ( rotary ) : 
 q5  =  2 2 2

4 5 6π n w +w +wl   

 
Find  the  joint  vectors  q0  and  q1  associated  with  w0  and  w1  by  using  the  above   inverse  
kinematic equations. 

 
Give  w0  as  the  input  to  IK  algorithm  of  a  five  axis  articulated  robot  and  calculate q0 [5], 
[4].  We get the parameters base angle, global tool pitch angle, intermediate variables, elbow angle, 
shoulder angle, tool pitch angle & the tool roll angle w.r.t. the TCV w0 [2], [3]. 
Then, give w1  as  the  input  to  IK  algorithm  of  a  five  axis  articulated  robot  and  calculate q1 
[2]. We get the parameters base angle, global tool pitch angle, intermediate variables, elbow angle, 
shoulder angle, tool pitch angle & the tool roll angle w.r.t. the TCV w1 [2].  
Then, compute the  joint  space  midpoint  of  the trajectory, i.e., qm as the average of q0 and q1.   
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V.   SIMULATION RESULTS  
A graphical user interface program in C / C++ is developed and the simulation results are shown in 
the Fig. 3.  Similarly, many points were given as inputs to the generated code which in turn was 
given as input to the controller and then the robot.  The code controls the robot to come from the 
home position, start at the point A and then move to the specified point B in a straight line.  
 

 
 

Fig. 3 :  Another pass of the algorithm 
 
VI.   CONCLUSION  

A simulation of an efficient method of the BDA was demonstrated in this paper using an 
articulated robot which was designed and fabricated in the college laboratory.  A method of 
computing the straight line motion between two given points in a 3D space using an articulated 
robot is demonstrated in this paper.  Analytical method is also show here for convenience along 
with the simulation study.   The real time implementation of the same was also carried out using a 
indigenously developed 5 axis articulated robot in the college.  The mathematical results & the 
experimental results / simulated results shows the effectiveness of the developed method [2]. 
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